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We demonstrate that the presence of a twist phase in a ran-
dom light beam leads to classical entanglement between
phase space degrees of freedom of the beam. We find ana-
lytically the bi-orthogonal decomposition of the Wigner
function of a twisted Gaussian Schell-model (TGSM) source
and quantify its entanglement by evaluating the Schmidt
number of the decomposition. We show that (i) classical
entanglement of a TGSM source vanishes concurrently
with the twist in the fully coherent limit and (ii) entangle-
ment dramatically increases as the source coherence level
decreases. We also show that the discovered type of classi-
cal entanglement of a Gaussian Wigner function does not
degrade on beam propagation in free space. © 2021 Optica
PublishingGroup

https://doi.org/10.1364/OL.445258

Classical entanglement has recently attracted much attention
both on the fundamental side [1–3] and in light of its promise
for a multitude of applications from quantum communication
protocols [4–6], optical metrology [7–10], and mimicking
quantum processes with classical light [11] to optical commu-
nications through noisy environments, such as a biological
tissue [12] or the turbulent atmosphere [13]. The theoretical
foundation of classical entanglement and its place in the context
of quantum information processing was laid down by Spreeuw
in a series of seminal papers [1,14]. This pioneering theoretical
work was then followed by the experimental demonstration and
exploration of entanglement between the spatial and polari-
zation degrees of freedom (DoFs) of a radially or azimuthally
polarized classical light beam by several groups [4,15–17]; see
also [3] for an up-to-date review.

Although the vast majority of research on classical entangle-
ment to date has been concerned with spatial and polarization
DoFs of non-uniformly polarized vector beams, other avenues
have also been explored, including space-frequency entangle-
ment of optical fields in connection with either atom trapping
[18] or phase-space quality of ultrashort pulsed beams [19] and
space–time entanglement of classical light [20]. Further, an
instructive perspective on classical entanglement in the phase
space of a fully coherent beam endowed with a vortex phase has
been theoretically presented in [21] and experimentally verified
in [22].

At the same time, the cross-spectral density of a random beam
field can possess an entirely different, non-local phase, a twist
phase, which couples pairs of points within the transverse plane
of the beam. The twist phase, which is unique to partially coher-
ent light as it vanishes in the fully coherent limit, was introduced
theoretically in [23] in the context of twisted Gaussian Schell-
model (TGSM) beams. Such beams were first experimentally
realized in [24], followed by the advancement of an alternative
experimental protocol to generate genuine TGSM beams [25].
Partially coherent light fields endowed with a twist phase have
been shown to arise in light–matter interactions in certain non-
linear media [26,27], and they have been successfully employed
for information transfer through the turbulent atmosphere
[28,29] and optical imaging [30,31].

In this Letter, we demonstrate that endowing the optical field
of a statistical beam with a twist phase leads to a new kind of clas-
sical entanglement in the phase space of the beam. We quantify
the discovered entanglement by evaluating the Schmidt number
of a bi-orthogonal decomposition of the Wigner function of a
TGSM beam at the source. In particular, we show that the twist
engendered entanglement disappears with the twist in the fully
coherent limit. Concurrently, we demonstrate that the strength
of entanglement of a TGSM source is significantly enhanced as
the source coherence falls off. We also show that the discovered
entanglement of a TGSM source does not degrade as the beam,
generated by such a source, propagates in free space.

We start by recalling that the cross-spectral density of a
TGSM source at a pair of points r1 and r2 in the source plane is
given by [23]

W(r1, r2)∝ exp

(
−

r2
1 + r2

2

4σ 2
I

)
exp

[
−
(r1 − r2)

2

2σ 2
c

]
e iu(r1×r2)⊥ ,

(1)
where (r1 × r2)⊥ = x1 y2 − x2 y1 is a cross product of 2D vec-
tors in the transverse plane of the source. Further, we introduced
an rms width σI of the source intensity, source transverse coher-
ence width σc , and a twist parameter u. Hereafter, we drop any
immaterial normalization factor. It will prove advantageous
to work with the Wigner function in lieu of the cross-spectral
density. The former is defined by the expression

W(R, k)=
∫

drW(R− r/2,R+ r/2)e ik·r, (2)
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where

R= (r1 + r2)/2, r= r2 − r1 (3)

are the radius vectors of the “center-of-mass” and position
difference of any two points with coordinates r1 and r2 within
the source. On substituting from Eq. (1) into Eq. (2) and
performing elementary Gaussian integrations, we can show that

W(R, k)=W+(X , ky )W−(Y , kx ). (4)

Here,

W+(X , ky )∝ e−X 2/2σ 2
I e−(ky+u X )2σ 2

eff/2, (5)

as well as

W−(Y , kx )∝ e−Y 2/2σ 2
I e−(kx−uY )2σ 2

eff/2, (6)

and we introduced the notation

1

σ 2
eff

=
1

σ 2
c
+

1

4σ 2
I

. (7)

Next, we infer from Eqs. (5) and (6) that the twist phase
engenders entanglement between ky and X and, independently,
between kx and Y becauseW+ cannot be separated into a prod-
uct of a function of the spatial coordinate X and that of the wave
vector component ky as long as u 6= 0. By the same token,W− is
entangled as a function of kx and Y . We can then streamline the
notation by introducing

x+ = X , k+ = ky ; (8)

x− = Y , k− = kx (9)

and writing down the two Wigner functions in a common
form as

W±(x±, k±)∝ e−x2
±
/2σ 2

I e−(k±±ux±)2σ 2
eff/2. (10)

The Wigner function of Eq. (10) can be expanded into a bi-
orthogonal series [32]

W±(x±, k±)=
∑

n

λn±ψn(x±)φn(k±), (11)

where the two orthogonal sets of real eigenfunctions {ψn} and
{φn} form a bi-orthogonal set in the phase space. Note that as
the Wigner function is real, so are the eigenfunctions {ψn} and
{φn}. At the same time, {λn} need not be all positive because the
Wigner function is not necessarily positive definite [33].

In general, the two sets {ψn} and {φn} must be determined
by solving a set of coupled Fredholm integral equations [32],
which is a formidable task. Fortunately, for Gaussian Wigner
functions, we can circumnavigate this obstacle by introducing a
scaling transformation

x̃± = a x±, k̃± = bk±. (12)

It follows that provided

a =
1
√

2σI
, b =

σc√
2(1+ t2/ξ 2

c + ξ
2
c /4)

, (13)

as well as

ζ± =∓
t/ξc√

1+ t2/ξ 2
c + ξ

2
c /4

, (14)

we can cast the Wigner function of Eq. (10) into a “canonical”
form

W±(x̃±, k̃±)∝ exp

(
2x̃±k̃±ζ± − x̃ 2

±
− k̃2
±

1− ζ 2
±

)
. (15)

Here, we introduced dimensionless twist t and coherence ξc
parameters by the expressions

t = uσ 2
c , ξc = σc/σI . (16)

We note in passing that these two propagation invari-
ant parameters completely characterize any TGSM source.
Furthermore, t is known to be bounded, |t| ≤ 1, such that u
vanishes in the fully coherent limit,σc →∞ [23].

To proceed, we can apply the Mehler formula to the “canoni-
cal” Gaussian Wigner function [32]

exp
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where Hn(x ) is a Hermite polynomial of the order n, to read off
the bi-orthogonal set {ψn} and {φn} by examining Eqs. (11),
(15), and (17). We can infer from these equations that up to an
irrelevant normalization constant

ψn(x̃±)∝
(

1

2nn!

)1/2

Hn(x̃±)e−x̃2
±
/2
; (18)

φn(k̃±)∝
(

1

2nn!

)1/2

Hn(k̃±)e−k̃2
±
/2, (19)

and the eigenvalues {λn} are given by

λn± =

√
1− ζ 2

±ζ
n
±

. (20)

Next, we can choose a non-negative eigenvalue set to quantify
classical entanglement [3]. Specifically, taking

νn = λ
2
n± = (1− ν)ν

n, (21)

where we denoted

ν =
t2/ξ 2

c

1+ t2/ξ 2
c + ξ

2
c /4

, (22)

we can define a Schmidt number K of the decomposition of
Eq. (11) as

K =

(
∞∑

n=0
νn

)2

∑
∞

n=0 ν
2
n

. (23)

Further, on substituting from Eqs. (21) and (22) into
Eq. (23), we obtain, after elementary algebra, the expression
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Fig. 1. Schmidt number K as function of the coherence parameter
ξc in the log-log scale and of the twist parameter t . Notice that the
figure illustrates two complementary trends: very rapid growth of K in
the vicinity of ξc = 0 and slow decay of K in the remainder of the avail-
able parameter range of ξc . The largest values of K are concentrated at
the edges corresponding to the largest attainable twist t =±1 and the
lowest available values of ξc .

K =
1+ 2t2/ξ 2

c + ξ
2
c /4

1+ ξ 2
c /4

. (24)

Equation (24) is the central result of this Letter. We can con-
clude at once from Eq. (24) that entanglement vanishes with
the twist: t = 0 implies K = 1. At the same time, for any finite
twist strength, t 6= 0, the Schmidt number approaches unity, as
ξc tends to infinity, i.e., a highly coherent TGSM source man-
ifests very weak entanglement. On the other hand, as ξc → 0,
K ' 2t2/ξ 2

c →∞. That is, a nearly incoherent TGSM source
is highly classically entangled.

To address a laboratory implementation of the twist induced
classical entanglement, we note that it is difficult, although not
impossible [34], to design an optical source with a transverse
coherence length shorter than the wavelength of light under
usual laboratory conditions. Moreover, a garden variety partially
coherent source is produced by transmitting a fully coher-
ent beam through a rotating ground glass disc with random
imperfections, whereby the transverse coherence size of thereby
generated source is determined by a characteristic distance
between adjacent imperfections. The latter is typically bounded
from below by the disc design to about 0.1 mm [25]. Thus,
assuming that σc ∼ 0.1 mm and considering a well expanded
light beam with σI ∼ 1 cm, we can estimate a readily attainable
level of twist phase induced classical entanglement (Schmidt
number) as Kmax ' 2σ 2

I /σ
2
c ∼ 2× 104. This fairly typical

situation is illustrated in Fig. 1, where we exhibit the behavior of
K as a function of the coherence parameter ξc in the log-log scale
to better juxtapose the rapid growth of the Schmidt number in
the low-coherence limit to the asymptotic fall off of K toward
unity. In the same figure, we also display the dependence of the
Schmidt number on the twist parameter t .

Finally, we recall that t and ξc are invariant on paraxial propa-
gation of a TGSM beam generated by the source: u, σc , and σI
scale on propagation such that t and ξc remain constant [23].
Hence, the Schmidt number and, by implication, the degree of
classical entanglement of the beam are propagation constants.
In other words, the strength of the unveiled, twist phase induced
type of classical entanglement of a Gaussian Wigner function
remains invariant on beam evolution in free space.

In conclusion, we have discovered and quantified classical
entanglement induced in the phase space of a random beam by
endowing the field of the beam with a twist phase. Although

our explicit results are for TGSM beams, the twist phase can
be shown to be imposed on any statistical beam [35–38]. The
twist induced entanglement then is relevant to random beams
described by any Wigner function, even though, in general,
the strength of such entanglement will not remain invariant
on beam propagation in free space. The disappearance of the
discovered entanglement in the fully coherent limit sets it apart
from any other known type of classical or quantum entangle-
ment that exists for coherent and partially coherent beams or for
pure and mixed quantum states, respectively. Our results can
find applications to quantum information processing, metrol-
ogy, and optical communications with classically entangled
light.
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